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Abstract

The static and dynamic responses of a circular elastic plate on a two-parameter tensionless foundation are investigated

by assuming that the external load is rotationally symmetric and the plate experiences axially symmetric displacements. In

the solution procedure, the vertical displacement of the foundation is determined by the corresponding governing

equation, whereas the vertical displacement of the plate is expressed in series in terms of the mode shapes of the completely

free circular plate. For the case of complete contact, the corresponding governing equation of the plate incorporated with

the edge reaction from the foundation is satisfied through the Galerkin’s approximation technique. The contact radius is

obtained by requiring that the surface of the foundation satisfies the corresponding continuity equations. It is shown that

the problem displays a highly nonlinear character due to the lift-off of the plate from the foundation and the numerical

treatment of the governing equation is accomplished by adopting iterative processes in terms of the contact radius. The

governing equation of the problem is solved numerically for the static and dynamic cases and the results are presented in

figures to demonstrate the nonlinear behavior of the plate for various values of the parameters of the problem

comparatively.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The response of elastic plates, such as slabs and pavements, on an elastic foundation of earthquake response
of footings is structural engineering problem of theoretical and practical interest. It is therefore natural that a
large number of studies has been devoted to the subject. Since the soil exhibits a very complex behavior, a
number of different foundation models with various degrees of sophistication have been proposed. In the
analysis of structures on soil the simplest model is the Winkler model. The Winkler model represents the soil
medium as a system of identical but mutually independent elastic springs. The model has various
shortcomings. The most serious deficiency of the model is the one pertaining to the independence of the
springs. On the other hand, elastic continuum model is a conceptual approach of the infinite soil media. The
second model provides much more information on the stresses and deformations within the soil mass
than Winkler model. However, this modeling of the soil by semi-infinite elastic continuum model leads to
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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many-fold intricacies form mathematical viewpoint. This severely limits the application of this model in
practice. In order to take care of shortcoming of both approaches, some modified approaches have been
proposed. In the Winkler foundation model, the foundation reaction is assumed to be proportional to the
displacement of the soil at the same point. The Winkler model can be considered as a system of closely spaced
linear springs and is referred as a one-parameter model, the elastic constant of spring being the parameter.
Because the springs are assumed to be independent and unconnected, no interaction exists between the
springs. The foundation outside the loading area does not contribute to the foundation response. Various
attempts have been made to improve the Winkler model and to obtain more realistic results by postulating a
two-parameter model. The shortcomings of the Winkler model are eliminated partly by adopting two-
parameter models with the simplest being the Pasternak model. This two-parameter model can be seen as a
liquid with a surface tension in addition to its buoyancy effect or a system of closely spaced linear springs
coupled to each other with elements which transmit a shear force proportional to the slope of the foundation
surface or a membrane having a surface tension laid on a system of elastic springs. The analytical aspects of
the continuously supported structures on various foundation models have been discussed by Kerr [1,2] and it
is pointed out that the intuitive approach may lead to the incorrect formulation of the boundary conditions for
the case of a two-parameter foundation model.

The response of structural elements resting on the one- and two-parameter foundation is usually
analyzed by assuming that the foundation supports compressive as well as tensile stresses, which simplifies the
analysis considerably. However, this assumption is questionable or not valid for many supporting media
including the soil. For structural elements on soil capable of supporting compressive reactions only, the
tensionless foundation model should be adopted for realistic results. It is difficult to determine the
region of contact in advance. When separation occurs, analysis involving the tensionless Winkler foundation
displays a nonlinear character gets complicated and its numerical treatment needs to be performed iteratively.
As a result, only a limited number of studies dealing with the tensionless Winkler foundation is published.
There are even fewer investigations exist on dynamic problems. When a tensionless two-parameter foundation
model is considered, the solution gets more complicated due to the contact conditions even in the static
problems.

When the static behavior of plates on a tensionless Winkler foundation is considered, there are various
papers dealing with the subject (Weisman [3], Villaggio [4], Dempsey et al. [5], Celep et al. [6–8], Hong et al.
[9]). Some of these problems are generalized to include the dynamic loads including oscillations of the plate as
well (Celep and Güler [10–12] and Celep and Genc-oğlu [13]). Generally, solutions are only given for a circular
and rectangular plate by applying approximate numerical techniques to the nonlinear governing equations of
the problem. On the other hand, for the dynamic problems, i.e., for oscillations of a plate on a tensionless
foundation, the contact region of the plate depends on time. The numerical analysis is carried out by adopting
step-wise integration in the time domain by updating the contact region continuously.

Various studies are carried out to improve the results by using two-parameter model for plates on an elastic
foundation. There is a variety of studies dealing with the problem of plates on the conventional two-parameter
foundation which provides continuous contact irrespective the type of the contact stress whether tensile or
compression (Vallabhan et al. [14,15], Ayvaz et al. [16,17], C- elik and Saygun [18,19], Buczkowski and
Torbacki [20]). The boundary conditions of beams on a two-parameter foundation is discussed in detail by
Kerr [21] utilizing the variational approach.

In spite of the mathematical elegance, research and the number of publications on a two-parameter
foundation model that reacts in compression only are very limited. The authors presume that the major
difficulties in the implementation of the model are the definition of the contact region, the formulation of the
corresponding boundary conditions and the continuous variation of the contact region in the case of time-
dependent loading. There is only one study in the literature that deals with the problem of a circular plate
subjected to a uniformly distributed load and a central concentrated load (Güler [22]). The aim of the present
paper is to extend this study to include the dynamic behavior of the elastic circular plate on the two-parameter
tensionless foundation under rotationally symmetric loading and displacement. Special attention is paid on the
boundary conditions and the force equilibrium in static and dynamic cases. The study is carried out by
assuming that an axially symmetric lift-off takes place, consequently the highly nonlinear governing equation
of the problem is discretized by using Galerkin’s technique. Numerical results are obtained by adopting
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iterations and presented to illustrate the validity of the solution procedure as well as the response of the plate
subjected to static and dynamic loadings.
2. Statement of the problem

Consider a completely free circular elastic thin plate of radius a and stiffness D, on a two-parameter
foundation having stiffnesses K and G as Fig. 1 shows. The plate is assumed to be subjected to a concentrated
load P(t) applied at the center and a rotationally symmetric distributed load Q(R, t), R is the coordinate in
radial direction. Since the geometry and the loading of the problem are axially symmetrical, all the parameters
of the problem reflect the same symmetry including the vertical displacement of the plate and that of the elastic
foundation. The loads are assumed to be time dependent, consequently the parameters of the system depends
on the radius R and on the time t.
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Fig. 1. Circular plate on the two-parameter foundation subjected to axially symmetric loads: (a) partial contact and (b) complete contact.
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Z. Celep, K. Güler / Journal of Sound and Vibration 301 (2007) 495–509498
In the two parameter foundation, it is assumed that foundation pressure Pf(R, t) and the foundation
displacement Ws(R, t) are related to each other according to

Pf ¼ KW s � GDW s. (1)

As the inspection of Eq. (1) reveals, the two-parameter foundation consists of essentially can be seen as
closely spaced linear springs of stiffness K connected to each other by a membrane having a surface tension
stiffness G. However, it is also possible to give a more sophisticated interpretation as well. The surface of the
foundation is divided into two regions. The first one is the free surface of the foundation and its displacement
Ws(R, t) is controlled by the equation

GDW s � KW s ¼ 0. (2)

Evaluation of the parameters K and G is discussed in various papers and recently in Ref. [17]. No pressure is
exerted on the foundation surface, i.e., there is no interaction between the plate and the surface where the
region beyond the plate area, i.e., for R4a [1]. However, this equation is also valid for the surface part of the
foundation under the plate where separation takes place, i.e., for B4R4a. For the present axially symmetric
case the solution of Eq. (2) is expressed as

W sðR; tÞ ¼ awsðr; tÞ ¼ aCðtÞKoðlrÞ for b � r ¼ R=a, (3)

where b ¼ B/a, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka2=G

p
and Ko is the modified Bessel function of second kind.

The displacement of the circular plate is governed by the equation

DDDW p þ KW p � GDW p

� �
HðR; tÞ �

P

pR
dðRÞ �Q

þ G
qW p

qR
�

qW s

qR

� �
R¼a

dðR� aÞ

R� a
HðR ¼ a; tÞ ¼ �m

q2W p

qt2
, ð4Þ

where W pðR; tÞ ¼ awpðr; tÞ is the displacement of the plate and m is the mass of the plate per unit area and d(R)
is the Dirac’s delta function [3,11]. In addition to the regular terms, the equation includes P(t) the concentrated
load at the center of the plate, the foundation reaction distributed on the contact region (0pRpB) and the
edge foundation reaction when the complete contact is established, i.e., for R ¼ a. When a partial contact
between the plate and the foundation takes place, then the reaction of the foundation is defined as a vertically
distributed force within the region 0pR ¼ a rpB ¼ ab as shown in Fig. 1a, where B(t) denotes the contact
radius. When the complete contact is the case, then a circumferentially distributed edge reaction is exerted by
the foundation at R ¼ a as shown in Fig. 1b and it is included in the governing equation (4). However, when
separation takes place, this edge reaction vanishes as stated by Kerr [2]. H(R, t) is an auxiliary function known
as the contact function and is defined as

HðR; tÞ ¼ 1 for 0 � RpB,

HðR; tÞ ¼ 0 for BpRpa, ð5Þ

which reflects the axial symmetry of the problem as well. The presented formulation does not include any type
of damping, such as material and radiation damping. More realistic results can be obtained by including these
damping. Damping can be defined parallel to the definition of the foundation stiffnesses K and G.
Furthermore, mass and damping can be included into the formulation to represent the foundation
participation to the response. However, the present paper aims to give a comprehensive formulation by
generalizing the static case and stressing the boundary conditions which have not been treated properly in
various papers. Due to the tensionless character of the foundation, the problem is highly nonlinear; therefore
Galerkin’s method is adopted for the solution. The displacement function of the plate is assumed to be a linear
combination of the axially symmetric free vibration mode shapes of the completely free circular plate including
a rigid vertical translation as follows:

W pðR; tÞ ¼ awpðr; tÞ ¼ a T̄o tð Þ þ
X1
n¼0

TnðtÞwnðrÞ

" #
, (6)
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where T̄o tð Þ and Tn tð Þ are time dependent parameters of the series and

wnðrÞ ¼ JoðlnrÞ þ AnIoðlnrÞ, (7)

where Jo and Io are the regular and modified Bessel functions of first kind, respectively, and ln are the roots of
the frequency equation (7)

J1ðlnÞ

I1ðlnÞ
¼
ð1� nÞJ1ðlnÞ � lnJoðlnÞ

ð1� nÞI1ðlnÞ � lnIoðlnÞ
An ¼ �

J1ðlnÞ

I1ðlnÞ
(8)

where n is the Poisson’s ratio. Eq. (8) is obtained by requiring that the corresponding boundary conditions of
the completely free plate are satisfied. By substituting the displacement functions (3) and (6) into the governing
equation of problem (4), using the identities

DDwnðrÞ ¼ l4nwn DJoðlnrÞ ¼ �l2nJoðlnrÞ DIoðlnrÞ ¼ l2nIoðlnrÞ,

the following non-dimensional equation is obtained for the unknown parameters T̄oðtÞ and Tn(t),

X1
n¼0

l4nwnðrÞTn þHðr; tÞk T̄o þ
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wnðrÞTn

" #
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n¼0

l2nw̄nðrÞTn �
p
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þ g
@wp

@r
�
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@r

� �
r¼1

dðr� 1Þ

r� 1
Hðr ¼ 1; tÞ

¼ �
d2T̄o

dt2
þ
X1
n¼0

wnðrÞ
d2Tn

dt2

" #
, ð9Þ

where the non-dimensional parameters related to the geometry, the load and the foundation are defined so
that a wide range of numerical values of the parameters of the problem can be covered:

k ¼
Ka4

D
g ¼

Ga2

D
p ¼

Pa

D
q ¼

Qa3

D
,

t2 ¼
ma4

D
t2 l2 ¼

k

g
¼

Ka2

G
w̄nðrÞ ¼ �JoðlnrÞ þ AnIoðlnrÞ. ð10Þ

By employing Galerkin’s procedure, i.e., by requiring the error in the governing equation (9) to be
orthogonal to each mode shape within the definition region of the equation, the following system of
differential equations is obtained:

M €Tþ KT ¼ F, (11)

where the dots denote the differentiation with respect to the non-dimensional time t and

TðtÞ ¼ T̄o To T1 T2; . . .
� �T

diagM ¼ ½0:5 mo m1 m2; . . .�,

KðtÞ ¼

ko k̄oo k̄o1 k̄o2 :::

¯̄koo koo ko1 ko2 :::

¯̄k1o k1o k11 k12 :::

¯̄k2o k2o k21 k22 :::

: : : : :::

2
666666664

3
777777775

FðtÞ ¼ f̄ o f o f 1 f 2 ; :::
h iT

,

mn ¼

Z 1

0

wnðrÞwnðrÞrdr,

koðtÞ ¼ k

Z 1

0

Hðr; tÞrdrþ glHðr ¼ 1; tÞ
K1ðlÞ
KoðlÞ

,
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k̄onðtÞ ¼ k
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0
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,
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þ
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2
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2p
ð1þ AnÞ ¯̄wnðrÞ ¼ �J1ðlnrÞ þ AnI1ðlnrÞ. ð12Þ

The vertical force equilibrium of the plate can be written as follows:

PðtÞ þ 2p
Z a

0

QðR; tÞRdR ¼ RK ðtÞ þ RGðtÞ þ RCðtÞ þ RI ðtÞ, (13)

where

RK ðtÞ ¼ 2p
Z a

0

KW pHðR; tÞRdR RGðtÞ ¼ �2p
Z a

0

GDW pHðR; tÞRdR,

RCðtÞ ¼ 2pGa
qW p

qR
�

qW s

qR

� �
HðR ¼ a; tÞ RI ðtÞ ¼ 2p

Z a

0

m
q2W p

qt2
RdR; ð14Þ

where P(t) and Q(R, t) are the external loads, and RK(t) and RG(t) denote the distributed foundation reactions
exerted by the foundation proportional to the two stiffness parameters of the foundation K and G,
respectively. RC(t) corresponds to the foundation reaction which is proportional to the difference of the slopes
of the foundation surfaces at the two sides of the edge of the plate. This force is distributed along the edge of
the plate and it develops, when there is complete contact between the soil and the foundation. All these
reactions have to be non-negative, i.e., compression due to the tensionless character of the two-parameter
foundation model. Finally, RI(t) corresponds to the resultant of the inertia forces of the plate. In fact this is the
only resultant in the force equilibrium in Eq. (13) which can change its sign. Using the assumption for the
vertical displacement functions, the force equilibrium in Eq. (13) can be expressed as follows in the following
non-dimensional form:

pðtÞ þ 2p
Z 1

0

qðr; tÞrdr ¼ rk þ rg þ rc þ ri,

rkðtÞ ¼
aRK

D
¼ 2pk
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" #
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D
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0
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2
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D
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Z. Celep, K. Güler / Journal of Sound and Vibration 301 (2007) 495–509 501
where substitution of the displacement functions into the integrals leads to the following relations:Z 1

0

Hðr; tÞrdr ¼ 0:5b2
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0

Hðr; tÞwnðrÞrdr ¼
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where b(t) denotes the non-dimensional contact radius. For the case of partial contact b(t)o1, the above
expressions depend on time. In the present formulation, it is assumed that the foundation cannot support
tensile reactions and the interaction between the foundation and the plate is only possible when the reaction
under the plate is compressive. In general, a separation takes place to avoid the tensile reactions. In the case of
the complete contact, one of the boundary conditions of the problem is the continuity of the displacement of
the foundation surface at the edge of the plate. Considering the symmetry of the problem, this can be
expressed as

W pðR ¼ a; tÞ ¼W sðR ¼ a; tÞ (17)

or by using the non-dimensional parameters of the problem

wpðr ¼ 1; tÞ ¼ wsðr ¼ 1; tÞ,

To þ
X1
n¼0

Tnwnðr ¼ 1Þ ¼ CKoðlÞ. ð18Þ

The second boundary condition is the inclusion of the edge reaction into the analysis of the problem. In fact,
this is done already in the governing equation of the problem (3) by using the Dirac’s delta function and it is
also included in the global checking of the vertical force equilibrium (13).

When a separation takes place, in the Winkler foundation model, the foundation displacement is
continuous at the point that separates the contact and lift-off regions, whereas no continuity for the slope of
the displacement is demanded. An excellent discussion about the boundary conditions involving the two-
parameter foundation is given by Kerr [2]. Generally, in the case of partial contact, the three anticipated
conditions can be stated at the point of separation; they are the continuity of the displacement of foundation,
its slope and zero pressure, as it is the case for the elastic continuum. However, Kerr [21] pointed out that
because of the reduced order of the governing differential equation of the two-parameter foundation model,
only two of the three anticipated conditions can be satisfied which can be obtained by a variational analysis.
For the problem under consideration, they are the continuity of the displacement and its slope. By taking into
account the axial symmetry of the problem, the contact curve which separates the contact and the lift-off
region will be a circle of the radius B ¼ ba. The boundary conditions of the partial contact will be the
continuity of the foundation surface and its slope at the contact radius:

W pðR ¼ B; tÞ ¼W sðR ¼ B; tÞ
qW p

qR
ðR ¼ B; tÞ ¼

qW s

qR
ðR ¼ B; tÞ,

wpðr ¼ b; tÞ ¼ wsðr ¼ b; tÞ
qwp

qr
ðr ¼ b; tÞ ¼

qws

qr
ðr ¼ b; tÞ, ð19Þ

To þ
X1
n¼0

Tnwn r ¼ bð Þ ¼ CKo lbð Þ
X1
n¼0

Tnlnwn r ¼ bð Þ ¼ �ClK1 lbð Þ.

Since a partial contact is in question, no edge reaction exists and due to the properties of the Dirac’s
delta function, the corresponding term in the governing Eq. (3) is excluded. With Eq. (19), the
formulation of the problem is completed. It is worth to note that at least in the present axially
symmetric case a negative value of the plate displacement, i.e., upward displacement guaranties a separation
between the plate and the foundation. However, contrary to the Winkler model, a positive value of the plate
displacement does not always indicate that there is contact at that point, as shown in Fig. 1a. Inspection
of the boundary conditions together with the governing equation of the problem justifies once more the use of
the Galerkin’s approximation, since it is very difficult, if not impossible to find a close solution
for the displacement functions for the plate as well as for the foundation surface, which satisfy all these
equations.

The static configuration of the plate on the foundation subjected to the concentrated load P and the
distributed load Q can be studied easily by using the static version of the governing Eq. (11)

KT ¼ F (20)
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Z. Celep, K. Güler / Journal of Sound and Vibration 301 (2007) 495–509 503
for both the conventional and the tensionless foundation models. Since the mode shapes of the completely free
plate is used in the expansion of the plate displacement function, the stiffness matrix K will be diagonal one for
g ¼ 0. Although the Winkler foundation model is a special case of the two-parameter model for g ¼ 0, the
formulation as well as the numerical treatment of the problem cannot yield the corresponding result directly,
due to the definition of l ¼ k/g. However, the numerical result which corresponds to the Winkler model can be
obtained in a acceptable degree of approximation for g-0 [7].

The evaluation of the system of the nonlinear equations requires an iterative solution by the fact that after
lift-off, these equations depend continuously on the varying degrees of the contact between the plate and the
foundation. On the other hand, they are relatively simple for a conventional foundation model for which the
coefficients of the stiffness matrix can be evaluated in a straightforward manner on the assumption that the
complete contact is established regardless of the foundation pressure. In this case the governing equation (11)
will be a linear one.

3. Numerical results and discussion

The linear versions of the governing equations (11) and (20) are valid for the conventional foundation model
and they can be obtained by assuming that the full contact is established between the plate and the foundation,
or in other words by assuming that the foundation supports compression as well as tension, i.e., by assuming
H(r, t) ¼ 1. Although in the present problem small displacements for the plate and the foundation are
assumed, the governing equation of problem (11) is highly nonlinear due to the tensionless character of the
foundation and it requires several iterative procedures for the evaluation of the numerical results for the static
case. Usually, numerical iterations require initially estimated values of the unknown contact radius. After
having evaluated the elements of the coefficients of the stiffness matrix, Eq. (20) can be solved, the
displacement functions are obtained. The contact radius is evaluated and checked. Iterative process is
continued until an acceptable approximation is attained. In order to decide on the rate of convergence of the
series in the solution, numerical treatment of the problem is carried out by considering various numbers of
terms in the series. It is found that an acceptable accuracy for the graphical representation can be obtained by
taking into account three mode shapes in addition to the rigid vertical translation. In the dynamic solution of
the problem, inclusion of more mode shapes does not increase the overall accuracy of the graphical
representation of oscillations. However, oscillations with small amplitudes but higher frequencies appear in
the solution. In all numerical calculations it is assumed that n ¼ 0.33 and q is uniformly distributed. The force
equilibrium (15) including the inertia force of the plate is checked in the static case as well as in the dynamic
case for each time step.

Assuming that the plate is subjected to static loads p and q, the numerical results are given in Figs. 2 and 3.
Figs. 2a–c show the contact radius b, the displacement at the center wo ¼ wp(r ¼ 0) and the edge
wa ¼ wp(r ¼ 1) of the plate, respectively, for q/p ¼ 0. As it is well known, the contact radius depends on the
foundation stiffnesses g and k. It is independent of the level of the loading, provided that there is only one type
of loading. In the present case, however, it depends on the loading ratio q/p. For a specific foundation model,
the contact radius b does not change, as the loads p and q increase proportionally. The vertical equilibrium is
maintained due to increase in vertical displacements proportionally. The plate subjected to a vertical central
load on the tensionless Winkler foundation has been investigated by Celep [7]. The present results agree well
for g ¼ 0 with those given in this study. Fig. 2a shows that the complete contact b ¼ 1 develops for rather low
values of the foundation stiffnesses k and g. As the stiffnesses increase, the plate starts lift off and the contact
region decreases. Figs. 2b and c show that the displacements of the center and that of the edge of the plate
decrease with increasing stiffnesses as expected. As the stiffness k increases, the effect of the stiffness g on the
displacements gets smaller. Although no result is presented, the same is valid for other way around, i.e., the
effect of k gets significant for smaller values of g. Since q ¼ 0, the displacements are proportional to the load p.
Fig. 2d shows the edge reaction rc which is generated when the complete contact develops. The edge reaction is
proportional to the difference of the slopes at the two sides of the plate edge and to the foundation parameter
g. The variation of rc starts from zero, where the difference of the slope is very large for g ¼ 0. It increases very
rapidly to a maximum value, and then it decreases and becomes zero when the complete contact develops.
Comparison of Figs. 2a and d shows that no edge reaction exists, when a partial contact is in question. The
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Fig. 2. Variation of (a) the contact radius b, (b) the displacement of the center of the plate wo, (c) the displacement of the edge of the plate

wa, (d) the foundation reaction rc with the foundation stiffness g for q/p ¼ 0 and for k ¼ 5, ’; 10, E; 20, m; 50, K; 100, n; 200, J; (for

k ¼ 5–20, m; 50, E; 100, n; 200, J Celep [7] for g ¼ 0).
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foundation reaction increases, when the corresponding foundation stiffness gets larger. Since the sum of the
reactions has to be equal to the external load, an increase in one of the foundation reactions results in a
decrease in the other foundation reactions.

Fig. 3 shows the similar variations for various values of the loading ratio q/p for k ¼ 50. Comparison of
Figs. 2 and 3 yields that the presence of the uniformly distributed load extends the complete contact region for
the same combinations of the foundation stiffnesses, delays the onset of the partial contact and decreases the
difference between the displacements of the plate at the center and at the edge. As q/p increases, the deformed
shape of the plate gets flatter and the number of the numerical iterations for evaluations of the contact radius b

increases rapidly. This is due to the fact that not only equality of the displacements, also the equivalence of the
radial slopes are required at the contact circle.

For the dynamic problems, on the other hand, i.e. for oscillations of the plate on the foundation, the contact
region of the plate depends on time. Numerical solution of the governing equation (20) is carried out for the
forced vibrations by assuming that the plate is in static equilibrium under the loading p and q. Oscillations of
the plate starts by changing the loading level to bp and bq by the dynamic load factor b. The time variation of
the loading can be written as p+(b�1)pH(t), where H(t) denotes Heaviside step function. The governing
equation (11) is a system of nonlinear differential equations, because the coefficients of the stiffness matrix
have time-dependent terms. When the plate is partially uplifted, the coefficients depend continuously on the
vertical displacements of the plate on the contact area. When a partial contact develops, the solution of the
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Z. Celep, K. Güler / Journal of Sound and Vibration 301 (2007) 495–509 505
static case or the initial configuration of the plate requires an iterative solution. Similarly, the initial
configuration of the dynamic behavior of the system is obtained by iteration and the governing differential
equation (11) is solved along the time axis by employing a step-wise numerical integration. At each time step
the contact function, the contact radius and the parameters of the problem including the coefficients of the
stiffness matrix are evaluated numerically and updated by considering the displacement configuration of the
plate at the previous time step. For identification of the response of the plate, numerous results are produced
for static and dynamic cases and selected ones are presented in figures.

Fig. 4 shows oscillations of the parameters of problem for g ¼ 2 and k ¼ 5 by assuming q/p ¼ 0, i.e., only a
concentrated load is present. At the onset of the uplift, the system starts oscillating and the oscillations
resemble to a harmonic variation. At this stage, the periods of the free vibrations can be evaluated
approximately. For the given combination of the foundation stiffnesses, the first two non-dimensional period
of the plate are calculated as 1.817 and 0.527, provided that complete contact is established. They
correspond to rotationally symmetric free vibrations of the plate on the two-parameter conventional elastic
foundation. In Fig. 4, oscillations of the corresponding parameters are not of harmonic nature and they
display complex variations. However, these two approximate periods of the plate can be detected by a close
inspection of these curves. It shows that the first vibration mode shape appears to be much more effective in
oscillations of the plate.
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As oscillations take place the contact region changes and the stiffness matrix has to be updated.
Consequently, the corresponding periods of the plate changes as well. When the lift-off region increases, i.e.,
when the contact radius decreases, the approximate period of the oscillation elongates.
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Figs. 4 and 5 include time variations of the contact radius b(t), the displacement of the center wo(t) and the
edge wa(t) of the plate, the sum of the foundation reactions rk(t) and rg(t) that are distributed on the contact
region, the edge reaction rc(t) and the sum of the inertia force ri(t) distributed on the plate. In Fig. 5, these
variations are presented for g ¼ 10 and k ¼ 50 by assuming that q/p ¼ 0.1. For these foundation stiffnesses,
the first two non-dimensional periods of the plate are 1.277 and 0.458 for r ¼ 0.849, i.e., the initial value of the
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contact radius. Similarly, these two periods can be detected in Fig. 5, albeit not as easy as in Fig. 4, due to the
rapid change of the contact radius during the oscillations.

4. Conclusion

The paper presents analysis of the lift-off problem of a circular elastic plate subjected to a concentrated axial
force and rotationally symmetric distributed loading on a two-parameter foundation. Special attention is paid
to the non-dimensionlization of the formulation as well as on the boundary conditions of the plate and the
foundation. In order to cover a large spectrum of values of the parameters, numerical results are presented by
introducing non-dimensional parameters. Although the displacements of the plate and the foundation are
assumed to be small, the governing equation of the problem is nonlinear, as the foundation cannot support
tension and the plate lifts off the foundation. Solution of the problem is accomplished by applying Galerkin’s
method and the numerical results are presented comparatively for various values of the parameters of the
problem. In static and dynamic cases, the numerical solution is assessed by checking the vertical force
equilibrium. From the numerical analysis presented, the following conclusion can be drawn:
a.
 In a two-dimensional foundation model, the separation point is to be determined by requiring the
continuity of the displacement and its slope. Due to the shortcoming of the model, the foundation pressure
displays a discontinuity along the contact circle contrary to the intuitive approach. When the complete
contact is established, an edge reaction develops as a result of discontinuity of the slope of the displacement
function. In the present formulation, the edge reaction is included into the governing equation of the
problem; it is not treated as a boundary condition.
b.
 Inclusion of the tensionless character of the foundation softens the static and dynamic behavior of the
system due to the decrease in the support flexibility. The approximate period of the oscillations increases,
when partial contact develops and the time variations of the parameters of the problem become more
complex.
c.
 The uplift of the plate is influenced mainly by the fundamental mode and the higher modes have lesser
effect on the behavior.
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